\qquad
\qquad

Newton believed that every object \qquad every other object.

The force of the attraction depends on the \qquad and \qquad of the two objects.

The Universal Law of Gravitation:

$\mathrm{F}_{\mathrm{g}}=$
$\mathrm{m}_{1}=\square$
$\mathrm{r}=\square$
$\mathrm{G}=\square$

Example: Calculate the gravitational attraction between you (70 kg) and the person sitting next to you (65 kg) if you are 1.2 m apart.

We can use the Universal Law of Gravitation to find the acceleration due to gravity at various distances from earth.

- As you go farther from the earth's surface, the acceleration (gravity)
- Two equations for gravitational force: $F=m a$ becomes $F_{g}=m g$

So:

$$
\begin{aligned}
& \mathrm{g}= \\
& \mathrm{G}= \\
& \mathrm{m}= \\
& \mathrm{r}= \\
& \hline
\end{aligned}
$$

Remember: r measures from the CENIER of the pla net, not surface!
\qquad
\qquad

Example: Find the acceleration due to gravity if you are $2.1 \times 10^{5} \mathrm{~m}$ above the earth's surface.

If you have a mass of 60 kg , what would your weight be at that height?

Geosync hronous Orbit

\qquad
Examples:
Sa tellites are \qquad . In order to not fall back to earth, they need to mainta in a certa in velocity...

In orderfor a sa tellite to stay in a consistent orbit:
\qquad $=$ \qquad

$$
\begin{aligned}
& g= \\
& v= \\
& r= \\
&
\end{aligned}
$$

Example: Calculate the speed needed for one of the DirecTV satellites to orbit at an altitude of $320,000 \mathrm{~m}$ above the surface of the earth.

